
CSS
You don’t have to know all of CSS3 to be able to do useful things with it in your prototypes. Here are some

of the more useful bits. (For a definitive and exhaustive reference, see MDN.)

The CSS rule
A CSS rule looks like this:

selector {
 property: value;
 ...
}

For example:

div {
 background-color: red;
 color: white;
}

This gives all <div>s a red background and white text.

Selectors

Selector Example What it means

element div Apply the rule to all matching elements (e.g., all
<div>s).

.class .sidebar_text Apply the rule to all elements with this class.

#id #signup_form Apply the rule to the element with this ID.

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

Combinators

[attribute=

"value"]

[type="radio"] Apply the rule to all elements with a type of radio.
(Only<input>s have a type of radio, so you’d
usually use them like this: input[type="radio"]
(see below).)

For attributes without a value, it can be used like this
to select elements that have the attribute:
[disabled].

There are also ways of matching just part of the value
—see this CSS Tricks post.

* * Apply the rule to all elements.

Selector Example What it means

Selector combination Example What it means

element.class p.sidebar_text Apply the rule to the specified type of element with
the specified class.

element#id form#signup_form Apply the rule to the specified type of element with
the specified ID.

selector1, selector2 section, div Apply the rule to all <section>s and all <div>s.

selector1 selector2 section .legal_text Apply the rule to all elements with a class of
legal_text within a <section>.

selector1 >
selector2

section > p Apply the rule to all <p>s that are direct children of a
<section>.

So it applies to this <p>:

<section>
 <p>Blah</p>
</section>

but not to this one:

<section>
 <div>
 <p>Blah</p>
 </div>
</section>

selector[attribute=

"value"]

input[type="tel"] Apply the rule to all <input>s with a type of tel.

For attributes without a value, it can be used like this
to select elements that have the attribute:
input[disabled].

Prototypes made with HTML, CSS, and JavaScript save you time, improve communication, and let you test earlier.  
Livetyping is the online course that teaches you how to make them.

https://css-tricks.com/attribute-selectors/
http://livetyping.capcloud.com/

Pseudo-classes

More pseudo-classes here.

selector1 ~
selector2

section ~ div Apply the rule to all elements that match the second
selector that are siblings of the first selector.

So section ~ div applies to all <div>s that are

siblings of a <section>.

selector1 +
selector2

section + div Apply the rule to all elements that match the second
selector that are adjacent siblings of the first selector.

So section + div applies to all <div>s that are
adjacent siblings of a <section> (i.e., come directly
before or after a <section>).

Selector combination Example What it means

Pseudo-class Examples What it means

selector:hover a:hover Apply the rule to matching elements on hover (i.e.,
when the pointer is over them).

selector:disabled,

selector:enabled

input:disabled Apply the rule to matching elements that are
disabled/enabled.

selector:first-child li:first-child Apply to the matching element that is the first child of
its parent element.

So li:first-child applies only to the first in a
 or an .

selector:last-child li:last-child Apply to the matching element that is the last child of
its parent element.

So li:last-child applies only to the last in a
 or an .

selector:nth-
child(arg)

li:nth-child(odd)

li:nth-child(3)

li:nth-child(4n)

Apply to the matching element that is the nth child of
its parent element. arg can be a number, odd or
even, or a formula.

So li:nth-child(odd) applies to the odd s in
a list (i.e., the first, third, fifth, etc.). Handy for stuff like
alternate row striping.

li:nth-child(3) applies to the third in a list.

li:nth-child(4n) applies to every fourth in a
list. (You can make more complex formulas too.)

Prototypes made with HTML, CSS, and JavaScript save you time, improve communication, and let you test earlier.  
Livetyping is the online course that teaches you how to make them.

http://livetyping.capcloud.com/
https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes

Specificity
Sometimes you will have more than one rule that sets the same property for the same element. (If you’re using a
front-end framework, it will have lots of CSS rules, and you will probably need to override some of them.) But
how does the browser decide which rule wins in this situation? And how do you make your rule the one that
wins?

It works like this: the more specific rule wins.

But what does that mean? Well, specificity is calculated from a number of things: whether the !important

keyword is used, inline styles (applied directly to an element using the style attribute instead of using a CSS

rule), and which of the following the selector includes: an ID, class names (more class names makes it more
specific), and/or element names.

This is how that works:

!important > inline style > ID > class > element

Let’s dig into that a bit more.

!important
!important is the most powerful. It always beats all the others.

So this:

div.callout { color: red !important; }

beats this:

div.callout { color: blue; }

So why not use !important whenever we find ourselves in this situation? Well, OK, what happens when you

end up with two rules that both use !important? You’re still going to have to use the other things (ID, class,

element) to make one rule more specific so that it overrides the other. It’s OK to use !important, but use it

sparingly.

Inline styles
Inline styles are where you add a style attribute directly to an HTML element, like this:

<p style="color:red;">Hello</p>

This will always beat any CSS rule that tries to set the color for this element (except one that uses !important).

I try to avoid using inline styles (I prefer to keep things separate), but they are handy for trying things out without
having to switch to a separate CSS file.

Prototypes made with HTML, CSS, and JavaScript save you time, improve communication, and let you test earlier.  
Livetyping is the online course that teaches you how to make them.

http://livetyping.capcloud.com/

IDs and classes
A rule that includes an ID beats one that uses only classes. Let’s say we have this in our HTML:

<div id="container">
 <p class="intro">Hello</p>
</div>

This rule:

#container { color: red; }

will beat this one:

.intro {color: black; }

This despite the fact that the first, ID-based rule does not directly target the <p> element.

Element names
A rule with just an element name as the selector will be beaten by one with a class or an ID. So for the same
HTML as above, this rule:

.intro { color: blue; }

will beat this one:

p { color: black; }

Combining selectors
Combining selectors to make them more specific increases a rule’s specificity. So this rule:

p.intro { color: red; }

beats both this one:

p { color: black; }

and this one:

.intro { color: blue; }

But the above rules still apply—a rule that uses an ID will beat all of these.

Rule of thumb
Make rules as specific as you can, and remember that you can go and add IDs and classes to your HTML if you
need to.

For more on specificity, see this CSS Tricks article.

Prototypes made with HTML, CSS, and JavaScript save you time, improve communication, and let you test earlier.  
Livetyping is the online course that teaches you how to make them.

https://css-tricks.com/specifics-on-css-specificity/
http://livetyping.capcloud.com/

Properties
The following is a list of the properties that I use all the time while prototyping. There are many, many more, but
I just don’t find myself using them. Some, like float and clear and media queries (@media) are important, but

if you use a framework such as Foundation or Bootstrap, you won’t really need them—the framework handles
all that fiddly layout stuff for you.

Property Value(s) What it means Example

font-family Names of one
or more fonts

The font(s) for the selected elements.
Multiple font names (a “font stack”) give
you fallbacks if a font isn’t available (e.g.,
Helvetica on Windows machines).

font-family: "Helvetica
Neue", arial, sans-serif;

font-size Numeric value
plus unit (px,
%, em, rem, etc.)
or keyword
(not used
much now)

The size of the text for the selected
element. px is absolute size in pixels. %
and em are relative to the parent element,
rem is relative to the root (html) element.

font-size: 1.6rem;

font-weight A keyword or a
numeric value

The weight of the text for the selected
element.

(Most fonts have bold and normal
variants; others have multiple numeric
weights: 100, 200, 300, etc. bold
corresponds to 700, normal to 400.)

font-weight: bold;

font-style normal or
italic

Makes the text of the selected element
italic or not.

font-style: italic;

text-
decoration

underline,
overline,
none, etc., plus
color and/or
style if desired.

Adds or removes underline/overline to the
text of the selected element. This is a
shorthand rule for:

text-decoration-line,

text-decoration-color, and

text-decoration-style.

text-decoration:
underline;

text-align left, right,
center,
justify, etc.

The text alignment for the selected
element.

text-align: center;

line-height Numeric value
(usually)

The line spacing of the selected element’s
text. 1.6 is a good value (browsers usually
default to 1.2).

line-height: 1.6;

Prototypes made with HTML, CSS, and JavaScript save you time, improve communication, and let you test earlier.  
Livetyping is the online course that teaches you how to make them.

http://livetyping.capcloud.com/
http://foundation.zurb.com
http://getbootstrap.com

margin One, two, or
four numeric
values plus
unit (px, %, em,
rem, etc.).
Negative
numbers are
allowed.

Adds or modifies whitespace outside the
bounding box of the selected element.

A single value sets the margin on all four
sides to the same size.

Two values set the top and bottom margin
to the first value and the left and right
margin to the second.

Four values set the top, right, bottom, and
left margins, in that order.

You can also set them individually using
margin-top, margin-right, margin-
bottom, and margin-left.

margin: 20px 10px 0px
10px;

padding One, two, or
four numeric
values plus
unit (px, %, em,
rem, etc.).

Adds or modifies whitespace inside the
bounding box of the selected element.

The syntax is the same as for margin,
above.

You can also set them individually using
padding-top, padding-right,
padding-bottom, and padding-left.

padding: 10px;

border Numeric value
plus unit for
line thickness,
plus style and/
or color if
desired.

Adds a border around the selected
element. This is shorthand for:

border-width,

border-style, and

border-color.

You can also set these for each side
separately using border-top, border-
bottom, etc.

border: 1px solid silver;

border-
radius

Numeric value
plus unit (px,
%, em, rem,
etc.)

Adds rounded corners to the border and/
or background of the selected element.
The example adds a small amount of
rounding to all four corners. (It is also
possible to add elliptical rounded corners,
different rounding on each corner, etc.)

You can use this to turn a square into a
circle by making the radius big enough.

border-radius: 3px;

Property Value(s) What it means Example

Prototypes made with HTML, CSS, and JavaScript save you time, improve communication, and let you test earlier.  
Livetyping is the online course that teaches you how to make them.

http://livetyping.capcloud.com/

color Keyword, hex
value (e.g.,
#FF0000), RGB
(rgb(255,0,0
)), or RGBa
(rgba(255,0,
0,0.5))

The color of the selected element’s text
(including underline, etc.).

The example makes the text red and 50%
opaque.

color: rgba(255,0,0,0.5);

background-
color

Keyword, hex
value (e.g.,
#FF0000), RGB
(rgb(255,0,0
)), or RGBa
(rgba(255,0,
0,0.5))

The background color of the selected
element’s bounding box. (Note that
padding gets the background color, but
margins don’t.)

The example sets the background color to
pale grey.

background-color:
#EEEEEE;

opacity A numerical
value between
0 and 1

The opacity of the selected element
(including all of its child elements).

Note that it is also possible to set the
opacity of just the element's text, just its
background, just its border, and so on (by
using RGBa values for color,
background, and border respectively).

opacity: 0.5;

z-index Any whole
number
(including
negative
numbers).
Default value:
0.

How the element is layered if it overlaps
other elements. Normally, if two or more
elements overlap, the source order
determines which one appears on top. z-
index lets you explicitly control this—the
element with the bigger z-index wins. (z-
index has no effect on elements with
position: static;.)

z-index: 10;

visibility visible or
hidden

Hides or shows the selected element
without affecting layout. Setting visibility
to hidden does not cause the following
elements to move up to where the
element was.

visibility: hidden;

Property Value(s) What it means Example

Prototypes made with HTML, CSS, and JavaScript save you time, improve communication, and let you test earlier.  
Livetyping is the online course that teaches you how to make them.

http://livetyping.capcloud.com/

display none, inline,
block,
inline-
block, etc.

How to display the selected element:

• none—hides the element. Unlike
visibility: hidden; this does affect
layout—it’s as though the element
doesn’t exist.

• inline—the element is displayed on the
same line as sibling elements. (You can’t
specify width, height, margins, etc. for
inline elements.)

• block—the element is placed on a new
line, below the previous element.

• inline-block—the element is placed
inline, but otherwise behaves like a block
element (you can give it height, width,
margin, etc.).

display: inline-block;

position static,
relative,
absolute, or
fixed

How the element is positioned:

• static (the default)—the element is
positioned normally. You can’t use top,
bottom, left, right, or z-index.

• relative—the element is positioned
relative to where it normally would be.
So you can use top, bottom, left, and
right to change its position.

• absolute—the element is positioned
relative to its parent (or the first ancestor
element with a position other than
static).

• fixed—the element is positioned
relative to the viewport and does not
move when you scroll. (Did not work in
older mobile browsers.)

position: relative;

Property Value(s) What it means Example

Prototypes made with HTML, CSS, and JavaScript save you time, improve communication, and let you test earlier.  
Livetyping is the online course that teaches you how to make them.

http://livetyping.capcloud.com/

top, bottom,
left, right

Numeric value
plus unit (px,
%, em, rem,
etc.)

Where the element is positioned, relative
to where it would normally be. Each one
moves the corresponding edge of the
element left or right (for left and right)
or up or down (for top and bottom).

Handy trick: when position is set to
absolute and the parent element’s
position is set to relative, you can use
these to stretch the element into position
(e.g., so it is 100% of the parent’s width
and height, regardless of the size of its
content).

Except for this special case, if you use top
and bottom together, top wins. And if you
use left and right together, left wins
(except on RTL pages).

top: 10px;

width Numeric value
plus unit (px,
%, em, rem,
etc.)

The width of the selected element. For an
image, setting just width (and not
height) scales it proportionately. For
elements containing text, setting just
width (and not height) causes the
element’s height to increase or decrease to
accommodate its content.

width: 100px;

height Numeric value
plus unit (px,
%, em, rem,
etc.)

The height of the selected element. For an
image, setting just height (and not
width) scales it proportionately. For
elements containing text, setting just
height (and not width) has no effect on
its width (by default, this will be 100% of
the width of the parent). Instead, it will
either add whitespace at the bottom of the
element (if the height is greater than what
it would be normally) or cause the content
to overflow the element’s bounding box (if
the height is less than what it would be
normally). See overflow for ways to
handle this.)

height: 200px;

min-width,
max-width

Numeric value
plus unit (px,
%, em, rem,
etc.)

Maximum or minimum width for the
selected element.

min-width: 100px;

max-width: 600px;

min-height,
max-height

Numeric value
plus unit (px,
%, em, rem,
etc.)

Maximum or minimum height for the
selected element.

min-height: 200px;

max-height: 400px;

Property Value(s) What it means Example

Prototypes made with HTML, CSS, and JavaScript save you time, improve communication, and let you test earlier.  
Livetyping is the online course that teaches you how to make them.

http://livetyping.capcloud.com/

overflow,
overflow-x,
overflow-y

visible,
hidden,
scroll, auto

Defines what happens when the content is
too big for its bounding box (for example,
if you set the height of the element to less
than what it would normally be). The -x
and-y variants define behavior for just the
x or y axis.

• visible (the default)—if the content is
too big, it flows out onto whatever is
there.

• hidden—the extra content is hidden.

• scroll—the extra content is hidden,
but scrollbars are added (on desktop) so
that all the content can be accessed. The
scrollbars are displayed all the time. (On
mobile, the content area can still be
scrolled.)

• auto—if the content is too big, the extra
content is hidden and scrollbars are
displayed. If the content is not too big,
scrollbars are not displayed.

overflow: scroll;

Property Value(s) What it means Example

Prototypes made with HTML, CSS, and JavaScript save you time, improve communication, and let you test earlier.  
Livetyping is the online course that teaches you how to make them.

http://livetyping.capcloud.com/

